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ABSTRACT

Urban traffic congestion in crowded cities is increasingly shaped by short term demand
fluctuations, spillback formation, and heterogeneous vehicle dynamics, which challenge fixed time
signal plans and reactive controllers. This paper proposes an Al enabled intersection agent that
combines (i) a deep learning (DL) predictor for short horizon traffic forecasting (15-60 minutes)
and (ii) an intersection level machine learning (ML) controller that applies bounded adaptations of
green times based on predicted demand and real-time sensing. To support both model training and
closed loop evaluation without requiring immediate access to city scale labeled data, we introduce a
two simulator workflow: a correlation aware city behavior generator that synthesizes realistic
temporal patterns (e.g., day/night and weekday cycles, holidays, weather dependent modal shifts,
and long term trends) to produce training data for the DL predictor, and a microscopic grid
simulator that models heterogeneous vehicles (AUTO, VAN, BUS) and intersection geometry to
quantify control impact under congestion. The evaluation uses a simplified Intersection Type-1
sensing layout for results reporting and discusses extensibility to Intersection Type-2 designs,
including full control and simplified sensor configurations suitable for different deployment
constraints. Performance is summarized through an Influence Coefficient (CI) that measures the
control induced change in congestion factor between baseline and ML enabled runs. Simulator
experiments indicate that the proposed agent can improve congestion outcomes while remaining
implementable under cost constrained sensing, and we outline cloud/MLOps requirements for
periodic retraining, governance, and safe deployment in real world urban infrastructures. This
correlation aware synthetic data generator extends the dynamic historical data generation concept
previously introduced for traffic management model training (Author, 2022).

KEYWORDS: Smart city; Traffic signal control; Microscopic simulation; Congestion factor; Multi
agent systems; Synthetic data; Spatio-temporal prediction; Cloud architecture; IoT; MLOps.
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Contributions

e A hybrid sensing + synthetic data generation pipeline to reduce dependence on dense sensor
deployments.

e A decentralized intersection agent meshes with model selection and voting supervisor for
robust cycle time adjustments.

e A practical evaluation workflow using a congestion sensitive influence coefficient (Cl) for
cross scenario comparability.

e A monitored-route case study demonstrating integration constraints and operational
considerations.

1.0 INTRODUCTION

Traffic congestion in large cities affects travel time, emissions, and economic productivity. While
adaptive control is widely studied, city deployments face fragmented data availability, legacy
infrastructure, procurement constraints, and the need for predictable operational behavior. In this
work we focus on crowded urban corridors and dense intersection networks where (a) sensing is
heterogeneous, (b) traffic patterns shift rapidly (events, incidents, seasonal effects), and (c)
operational teams require transparent, modular solutions rather than monolithic black box
controllers. (Zhao et al., 2024).

We frame the problem as a closed loop optimization system that must (i) ingest mixed quality data,
(ii) predict near-term spatio-temporal demand, (iii) select safe and effective signal parameters, and
(iv) provide measurable benefits under simulation and limited field evidence. To support urgency
driven publication and deployment timelines, we emphasize an approach that is implementable with
conventional ML classifiers/regressors and integrates cleanly into cloud pipelines. (Zhao et al.,
2024).

2.0 RELATED WORK

Urban traffic management research spans (i) short-horizon traffic state prediction and (ii)
adaptive signal control. Forecasting work increasingly models road networks as graphs and learns
spatio-temporal dependencies using deep architectures. Representative approaches include STGCN
(Yu et al., 2018), diffusion based recurrent models such as DCRNN (Li et al., 2018), and adaptive
graph methods such as Graph Wave Net (Wu et al., 2019). These models motivate our design
choice of a dedicated DL predictor that provides rolling 15-60 min forecasts for each controlled
intersection. This correlation aware synthetic data generator extends the dynamic historical data
generation concept previously introduced for traffic management model training (Andreescu, 2022).

For signal timing optimization, classical coordinated control and actuated heuristics are
complemented by learning based methods, especially deep reinforcement learning (DRL) in multi
intersection settings. Recent surveys highlight DRL as one of the most active directions in traffic
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signal control (Zhao et al., 2024). Within DRL, Press Light connects learning with max pressure
inspired reward design and demonstrates strong performance on arterial networks (Wei et al.,
2019). CoLight improves network level coordination by learning dynamic inter agent
communication via graph attention (Wei et al., 2019). Our contribution differs by explicitly
separating forecasting (DL) from control (ML) and by introducing a two simulator workflow for
data generation and closed loop evaluation.

Simulation underpins evaluation in this domain. SUMO is widely used for microscopic traffic
simulation (Alvarez Lopez et al., 2018), and City Flow was proposed as a scalable environment for
city-wide traffic signal control studies (Zhang et al., 2019). In contrast to using a single simulator
for both training and evaluation, we employ two generators with complementary purposes: a city
scale behavioral generator to create structured spatio-temporal patterns for DL training and a
microscopic grid simulator to quantify control impact via travel time based metrics.

3.0 PROBLEM SETTING AND DESIGN GOALS

G1. Operate with heterogeneous sensors (Al and non-Al cameras) and intermittent loT feeds.

G2. Enable safe incremental deployment (intersection by intersection) while coordinating at
network scale.

G3. Provide fast evaluation and monitoring using metrics interpretable by city stakeholders.

G4. Support emergency overrides (e.g., green wave for responders) without retraining.

G5. Fit within cloud native MLOps pipelines for retraining, validation, and versioned rollouts.

4.0 PROPOSED FRAMEWORK

4.1 Intersection Agent: ML Controller + DL Traffic Predictor

We model each signalized intersection as an autonomous agent that continuously estimates the near
future load and adapts its signal timing within safety bounds. The agent consists of two coupled
components:

As shown in the following figure, we summarize the component discussed in this subsection.

Figure 1. Intersection agent architecture (DL future-traffic prediction + ML inference/control), fed
by local sensing and coordinated by a central service (including green-wave / special requests).
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We use this figure to support the formal definitions and the experimental discussion that follows.

e A deep learning (DL) predictor that forecasts the traffic level for the next decision horizon
(typically 15-60 minutes) using city scale context.

e A lightweight machine learning (ML) controller that converts the forecast and local
measurements (queues, arrivals, phase utilization) into incremental green time adjustments
for the current cycle plan.

This separation is intentional: the DL predictor focuses on learning broader spatio-temporal
patterns, while the ML controller remains interpretable and easily constrained (e.g., minimum
pedestrian green, maximum cycle length, emergency overrides).

4.2 Simulator/Generator A: City Scale Behavior Generator for DL Training

The first simulator is a city scale behavior generator whose primary goal is data generation for
training and stress testing the DL predictor. It produces approximate intersection level traffic
indicators (e.g., density/flow/queue proxies) for any location in the city over long time spans. The
generator embeds a set of domain correlations (“generation principles”) that emulate realistic non
stationarity and multi-factor effects.
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The initial objective is to control the presence/strength of these injected correlations and evaluate
how accurately the DL predictor learns them, before integrating the predictor into the closed loop
control system.

4.2.1 Injected Correlation Families

The generator injects controlled, configurable correlation families that emulate real-world demand
shifts: (i) diurnal effects (hour-of-day) modulating density, braking intensity, and attractor/repulsor
(“magnet”) strengths by road/section class; (ii) weekday effects (e.g., amplified In/Out-point
magnetism on Fridays and density on Sundays); (iii) calendar events (public holidays and holiday
periods) shifting demand peaks toward the day(s) before and the final day of the period; (iv)
weather-driven mode choice, where temperature/precipitation/wind speed update the transport-
type distribution and wind direction adds cost for pedestrians/bicycles (triggering possible mode
switches); and (v) a long-term trend where the private-auto share increases by ~1% per year
(configurable). By adjusting these parameters, we stress-test the DL predictor’s ability to learn
known patterns before integrating it into the control loop.

4.3 Simulator/Generator B: Microscopic Grid Simulator for Control Evaluation

The second simulator is a microscopic evaluation environment used to quantify control benefits
under controlled conditions. It represents the road network as a rectangular mesh of intersections
and lanes, and supports randomized route choices (left/right/straight) to create diverse flows.

As shown in the following figure, we summarize the component discussed in this subsection.
Figure 2. Type-2 intersection geometry used in the microscopic simulator (schematic).
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Figure 2 depicts the full-control Intersection Type-2 model. In this configuration, each sensor is an
Al camera that estimates: (1) the number of vehicles visible in the scene along with their speeds,
and (2) the vehicle debt—the number of vehicles crossing a reference line per unit time.

The full model includes sensors for inbound traffic (cxxxIx), outbound traffic (cxxxOx), blocking
traffic inside the intersection (bxx), and pedestrian flows via PX and PY sensors. With full control,
the ML controller is explicitly informed about internal blocking conditions and can adjust green
allocations to reduce the risk of complete gridlock.

In addition to the full model, we also consider a simplified Intersection Type-2 configuration that
includes only inbound and outbound sensors. This variant omits the internal blocking sensors,
providing reduced control fidelity but lower deployment complexity.

Figure 3. Simplified Intersection Type-2 sensor layout (inbound/outbound sensing only).
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This simplified layout supports basic demand-adaptive signal timing while avoiding the additional
cost and calibration required for blockage detection.

The results reported in this study were obtained using Intersection Type-1 configurations. To
ensure completeness, we provide the simplified Intersection Type-1 layout used in experiments.

https://ijeber.com Copyright © The Author, All rights reserved Page 33




International Journal of Education, Business and Economics Research (IJEBER)
Vol. 6 (1), pp- 28-42, © 2026 IJEBER (www.ijeber.com)

Figure 4. Simplified Intersection Type-1 sensor layout used in experiments.
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Intersection Type-1 preserves inbound/outbound sensing for demand estimation while minimizing
on-site instrumentation.

4.3.1 Vehicle and Intersection Modeling

We simulate three vehicle classes—bus, van, and passenger car—each with distinct physical
characteristics (maximum speed, acceleration, braking). The simulator instantiates a parameterized
intersection geometry (Type-2 intersection template) and collects signal states, per phase statistics,
and full vehicle trajectory histories.

We evaluated several Intersection Type-2 configurations to reflect different deployment constraints:
(i) approaches with 1, 2, or 3 lanes per direction (per sense), and (ii) full-control sensing versus a
simplified sensing layout with fewer sensors. This allows the controller to be assessed under both
high instrumentation and cost constrained settings.

Vehicle Dynamic Behavior

e To reproduce the behavior of a vehicle, we use a simplified form of the Intelligent Driver
Model (IDM) introduced by Treiber, Hennecke, and Helbing (2000).

e At each simulation iteration, the position and speed of each vehicle are updated using the
following discrete time kinematic approximations:
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v(t + dt) = v(t) + a(t) - dt
X(t +dt) = x(t) + v(t) - dt + a(t) - dtz/ 2

Here, x is longitudinal position, v is speed, a is acceleration, and dt is the simulation time step.
Vehicles are sampled dynamically using type dependent weights (p_weight) and are parameterized
by length (1), desired minimum gap to the leader (s0), driver reaction time (T), maximum speed
(v_max), maximum acceleration (a_max), and maximum braking deceleration (b_max). For
visualization, types are rendered in distinct colors (BUS: green, VAN: blue, AUTO: brown).

A typical microscopic snapshot illustrating queue build-up is shown in the following figure.

Figure 5. The formation of “waiting waves” at the entrance to the intersection.
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This phenomenon emerges naturally from heterogeneous vehicle parameters and stochastic turning
decisions, and it is a key mechanism behind congestion propagation in the grid.

Table 1. Vehicle types and parameters used in the microscopic simulator
Type Color | p_weight | I (m) sO(m) | T(s) v_max |a max |b_max
(m/s) (m/s?) | (m/s?)

AUTO | Brown |9 4 4 1 10.0 2.5 7.5
VAN Blue 4 6 6 1 8.0 2.0 6.0
BUS Green |3 10 10 1 6.0 1.5 4.5

Where p_weight is a weight for the vehicle generator.

As shown in the following figure, we summarize the component discussed in this subsection.
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Figure 6. Qualitative snapshot of simulated vehicles approaching and traversing an intersection.
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We use this figure to support the formal definitions and the experimental discussion that follows.

4.3.2 Closed Loop Test Protocol
We evaluate the intersection agent with a two run protocol:

As shown in the following figure, we summarize the component discussed in this subsection.

Figure 7. Two-run experimental protocol: baseline simulation — ML training — simulation with
ML control — CI evaluation.
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We use this figure to support the formal definitions and the experimental discussion that follows.

e Run 1 (baseline): execute the simulation without any trained intersection ML controller (fixed
time or no adaptive signal plan). Collect per intersection feature/label pairs for training.

e Training: train the local ML controllers using the data collected in Run 1 (optionally
augmented by city scale DL forecasts).
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e Run 2 (controlled): re-run the simulation with each intersection connected to its trained ML
controller, which adjusts green times within predefined limits.

The outcome comparison uses (i) the congestion factor computed from simulator statistics and (ii)
an influence coefficient (Cl) that aggregates improvements across the network and scenarios. This
enables consistent comparisons across traffic loads.

4.4 Implementation Notes and Safety Constraints

To ensure operational feasibility, the ML controller applies bounded adjustments: minimum green
per phase, maximum cycle length, and optional fairness constraints to prevent starvation.
Emergency ‘green wave’ requests are handled as high priority overrides that temporarily supersede
ML adjustments, while preserving audit logs for post incident analysis.

5.0 EXPERIMENTAL SETUP

We evaluate the proposed framework using a paired, closed loop protocol in Simulator/Generator
B. For each scenario, we run (i) a baseline simulation without ML control to collect training data
and (ii) a simulation with ML control enabled under the same configuration to quantify impact
using the CI metric defined in Section 6.

5.1 Scenario Factors and Demand Regimes

Scenarios vary demand intensity and temporal variability to emulate urban traffic fluctuations. The
boundary vehicle generators can be configured with periodic functions (e.g., sinusoid or
square/rectangle waves) or step changes to stress the controller under both smooth and abrupt
demand shifts. Generator A can additionally inject structured correlations (Section 4.2.1) to produce
training data for the DL predictor.

5.2 Features and ML Controllers

At each intersection, we compute per cycle features from local counts and queue proxies, optionally
augmented with predicted near future traffic from the DL predictor. We evaluate three feature
variants (A/B/C) and train multiple supervised models: k-NN, SVM, Naive Bayes, Decision Tree,
Random Forest, and a small DNN. During the control run, the trained model outputs a score that
adjusts the next cycle’s green allocation within predefined bounds.

5.3 Control Limits and Update Frequency

Green-time adjustments are applied at each phase transition (i.e., once per cycle per approach
group). To prevent oscillations and maintain safety, changes are bounded (minimum/maximum
green per direction) and scaled by a correction coefficient cycle_correction_coef (default 0.5 in our
implementation).

Table 2. Experimental setup factors and levels used for evaluation.
Experimental factor Levels used Rationale
Demand variation function | Sinusoid; Rectangle; Steps | Tests controller robustness
to smooth vs abrupt
demand changes.
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Injected correlation regime
(Generator A)

Diurnal/weekday; Calendar
events; Weather & mode
choice; Long-term trend

Stress-tests the DL
predictor under structured
shifts before closed-loop
control.

Sensor coverage

Counters only; Counters +
blockage Sensors;
(optional) Al camera
count/blockage

Evaluates performance
under heterogeneous and
partial sensing.

Control model/feature set

Feature variants 8A/8B/8C;
multiple classifiers

Compares local controller
sensitivity to inputs and

model class.

6.0 METRICS AND INFLUENCE COEFFICIENT
We evaluate congestion using the Travel Time Ratio between an origins A and a destination B:

e Tt =travel time under traffic conditions (seconds).
e TO =travel time in a free flow (empty city) condition (seconds).

The congestion factor is defined as:
FC = Tt/TO

For a simulation run, the General Congestion Factor is defined as:
GCF =med(Tt) / med(T0)

We run the simulator twice under identical demand and geometry:

e FCG = GCF for the baseline run (without ML).
¢ FCGML = GCF for the ML-controlled run.

The influence coefficient is the relative reduction of congestion due to ML control:
CI = (FCG — FCGML) / FCG

Since med(T0) and med(TOML) are equal by construction, Cl can be expressed using only route
travel times:
Cl = (med(Tt) — med(TtML)) / med(Tt)

These definitions are used consistently across all experimental scenarios and repeated runs.

7.0 RESULTS

We evaluate the closed loop intersection control using the two run protocol (Figure 9) and report
the Congestion Factor Influence Coefficient (CI) defined in Section 6. Experiments vary both (i) the
feature variants used for the intersection ML controller (A/B/C) and (ii) the shape of the traffic
variation functions used to generate demand patterns (sinusoid, rectangle, steps).

As shown in the following figure, we summarize the component discussed in this subsection.
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Intersection ML training setup and feature variants.
Figure 8. Classifier accuracy by feature variant (8A/8B/8C) under a fixed cycle configuration

Model |Rate |Cycles [BA_accuracy (%) [8B_accuracy (%) [8C_accuracy (%)
knn ] 20 49 50 50
sVC ] 20 56 57 56
nb ] 20 32 36 41
dtr ] 20 o8 64 a1
rfc ] 20 59 64 57
kfold ] 20 32 32 35

For training the intersection ML models, we executed a simulation of 20 cycles, each cycle lasting
1000 seconds, with a reference vehicle generation rate of 8.

During feature engineering, we retained three feature variants:

Variant A: feature_names = ['cycle_time_WE','L''R’,'S",'upstream’,'upstream_last_cycle’, ‘passed_in_last_cycle’,
'total_pred]

Variant B: feature_names = ['road_id','L','R",'S",'upstream’,'upstream_last_cycle', '‘passed_in_last_cycle', ‘total_pred’]

Variant C: feature_names = ['road_id",'L','R",'S",'upstream’,'upstream_last_cycle', 'total_pred']

Based on the generated data and the preprocessing pipeline, we trained six ML model types: knn (K
Neighbors Classifier), svm (Support Vector Classifier), nb (Gaussian Naive Bayes), dtr (Decision
Tree Classifier), rfc (Random Forest Classifier), and kfold (DNN model).

The DNN (kfold) model uses the following structure:

model.add(Dense(model_size, input_dim=model_size, activation="relu"))
model.add(Dense(model_size * model_size, activation="relu’))
model.add(Dense(model_size, activation="relu"))

model.add(Dense(1, activation='sigmoid'))

Where model_size is the number of features for variants (A, B, C).
The accuracy values obtained across the 18 training runs (percent) are reported in Figure 9.

We use this figure to support the formal definitions and the experimental discussion that follows.
Across tested scenarios, feature variant B yields the most consistent gains, and several classifiers
exhibit sensitivity to the demand variation regime. For example, SVC performs comparatively
better under smooth traffic variation, while NB can behave better under abrupt changes—
suggesting that no single model is uniformly optimal across all regimes. This motivates a future
‘voting’ or met selection supervisor that can switch the local controller model based on recent
performance and forecast error.
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As shown in the following figure, we summarize the component discussed in this subsection.

Figure 9. Coefficient reduction (coef.red%) by model across traffic-variation generator functions
(sinusoid, rectangle, steps).

Cycle length: 500 sec

Cycle

number: 1

Gen

Function: Sinusoid Rectangle Steps

1
model coef red%o coef red%o coef red%o

knn 4363 5547 43 83
sV 47.13 57.79 49.65
nb 4689 58.44 484
dtr 44 34 51.66 4191
rrfe -20.17 26 .48 291

We use this figure to support the formal definitions and the experimental discussion that follows.
Figure 9 summarizes classifier accuracy across the three feature variants (8A/8B/8C) under a fixed
cycle configuration, highlighting stronger performance for the best feature set. Figure 9 reports the
percentage reduction in the congestion related coefficient (coef.red%) across demand generation
functions. Notably, the worst observed CI value in the reported experiments is 14.64% (SVM),
while the remaining configurations achieve higher reductions. The results suggest that Naive Bayes
(NB) is particularly effective in sparse-traffic scenarios, where the vehicle flow rate (“debit”) varies
sharply over short time intervals, yielding the highest observed congestion reductions. Some
configurations (e.g., RFC) can yield poor or even negative effects under certain training conditions,
indicating the need for robust validation and drift monitoring prior to deployment.

8.0 DISCUSSION AND PRACTICAL DEPLOYMENT

Architecture note (brief): In addition to the algorithmic workflow, we elaborated deployment
architectures for Azure and Google Cloud Platform (GCP) to validate an end-to-end pipeline
(ingestion, training, deployment, monitoring, rollback). We keep cloud/MLOps details concise
because the scientific contribution is the intersection agent design and the two-simulator evaluation
protocol.

https://ijeber.com Copyright © The Author, All rights reserved Page 40




International Journal of Education, Business and Economics Research (IJEBER)
Vol. 6 (1), pp- 28-42, © 2026 IJEBER (www.ijeber.com)

Implementation note: The proposed framework is provider agnostic and can run on municipal
servers, edge devices, or cloud infrastructure. Deployment is treated as an engineering constraint
(reliable ingestion, monitoring, rollback), not as a scientific contribution.

Discuss how heterogeneous sensing affects model stability, how often retraining is needed, and how
to monitor drift in calendar/weather effects. Explain the separation between DL forecasting and ML
control as an engineering choice for transparency and incremental deployment.

9.0 CONCLUSION

The simulation results are encouraging and support the feasibility of the proposed approach for
training and deploying intersection-specific prediction and control models across heterogeneous
intersection types. The two generator workflow—a correlation aware city behavior generator for
forecasting-data creation and a microscopic grid simulator for closed loop evaluation—provides a
practical basis for iterating on model design before field deployment.

For real world adoption, a fully automated cloud training pipeline is required to periodically retrain
models on large volumes of streaming data and to manage robust MLOps practices (versioning,
validation gates, staged rollout, and monitoring). The design explicitly considers interactions
between cloud components and terrestrial infrastructure, as well as the human factor: hybrid sensing
scenarios are supported, combining Al-enabled cameras with legacy sensors and loT integration.
Real-time processing and analytics, together with visualization and command interfaces, are
essential to enable authorities to intervene and influence system behavior when needed.

We also investigated how the two major cloud ecosystems (Azure and Google Cloud Platform) can
support CI/CD, Al pipelines, and geographically distributed deployments across city infrastructure.
Such systems demand strict governance over trained models and deployments spanning cloud, on
premises, and edge components.

Suggestions for further research include:

e Integrating large language models (LLMs) and generative Al as supervisory layers that interact
with human operators for scenario planning, explanation, and audit ability.

e Green-wave coordination for emergencies, authorities, and disaster response, including safe
override policies and compliance constraints.
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Figure Table
Table 3. Figure list and titles (Figure Table).
Figure | Title
1 Intersection agent architecture (DL future-traffic prediction + ML inference/control), fed
by local sensing and coordinated by a central service (including green-wave / special
requests).
2 Type-2 intersection geometry used in the microscopic simulator (schematic).
3 Simplified Intersection Type-2 sensor layout (inbound/outbound sensing only).
4 Simplified Intersection Type-1 sensor layout used in experiments.
5 The formation of “waiting waves” at the entrance to the intersection.
6 Qualitative snapshot of simulated vehicles approaching and traversing an intersection.
7 Two-run experimental protocol: baseline simulation — ML training — simulation with
ML control — CI evaluation.
Classifier accuracy by feature variant (8A/8B/8C) under a fixed cycle configuration.
Coefficient reduction (coef.red%) by model across traffic-variation generator functions
(sinusoid, rectangle, steps).

https://ijeber.com Copyright © The Author, All rights reserved Page 42




