
International Journal of Education, Business and Economics Research (IJEBER) 

ISSN: 2583-3006 

Vol. 5, Issue 5, September-October 2025, pp 52-63 

To cite this article: Pozdniakova Mariia Olehivna (2025). Algorithm For Predicting 
Vulnerabilities In Software Code Using Transformers. International Journal of Education, 

Business and Economics Research (IJEBER) 5 (5): 52-63 

https://ijeber.com                            Copyright © The Author, All rights reserved Page 52 

 

ALGORITHM FOR PREDICTING VULNERABILITIES IN SOFTWARE CODE USING 

TRANSFORMERS 

 

Pozdniakova Mariia Olehivna 

 

Technical AI ResearchAssosiate @ KeywordsStudios 

 

https://doi.org/10.59822/IJEBER.2025.5504 

 

ABSTRACT 

Keeping code safe grows harder each release cycle. As repositories sprawl and continuous 

integration shortens review windows, hidden buffer mishaps or logic flips slip past human eyes. 

This article gathers, cross-checks, and re-weights results from a dozen peer-reviewed studies that 

fine-tuned CodeBERT, GraphCodeBERT, VulCoBERT and allied transformers against widely-used 

benchmarks such as Devign, CWE-119, and LineVul. The design is simple enough to bolt into a 

pipeline yet expressive enough to surface data-flow anomalies that elude purely lexical models. 

Pooled statistics indicate that, relative to classical static analyzers, transformer-based detectors raise 

mean F1 by seven percentage points and chop false positives by roughly a quarter, though variance 

widens on cross-project splits. Our prototype, re-implemented from open assets, mirrors those 

numbers within two decimal places-close enough for engineering choice. We further show, through 

a small ablation borrowed wholesale from prior papers, that numeric-literal embeddings matter 

more than previously assumed, hinting at subtle type inference cues. Energy cost? About two GPU 

minutes per thousand functions, that is acceptable for nightly builds. Oddly, memory footprint 

balloons when comments are kept, suggesting a quick hygiene win for practitioners. By blending 

conceptual synthesis with re-run experiments, the paper offers a ready map for teams who must 

protect mixed-language stacks without budget for large-scale labeling. Limitations remain: C and 

C++ dominate the evidence base, and we cannot yet guarantee zero-day coverage. Even so, the 

direction is clear-transformers, properly wired, tilt the odds toward safer software. Future directions 

include distilling the network, benchmarking on Rust and Go, and surfacing contextual hints inside 

popular code editors like VSCode. 
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1.0 INTRODUCTION 

Software security, once a niche concern addressed mainly at release time, has become a moving 

target that shifts every hour a new pull-request lands. Modern repositories contain millions of lines 

of legacy and auto-generated code, the sheer scale overwhelms manual review and even the best 

rule-based scanners. Worse, empirically measured false-positive rates still hover around the fifty-

percent mark for popular static tools, which breeds alert fatigue and, in extreme cases, outright 

dismissal of real warnings. Transformer models promise a different trade-off. By modelling long-

range token interactions and implicitly capturing control-flow cues, they approach the task the way 

experts do-context first, pattern later. Early evidence is encouraging: VulCoBERT lifts the F1 score 

on the Devign benchmark by roughly seven points over a tuned graph neural network, even though 

its creators never touched a single handcrafted rule (Xia et al., 2024). Transfer-learning studies 

extend that optimism, when a CodeBERT backbone fine-tuned on a C dataset is re-targeted to Java 

without additional labels, precision drops only a handful of points, not the cliff one might expect 

(Kalouptsoglou et al., 2025). These signals hint that language-agnostic representation learning is no 

longer a research dream but an operational option. 

 

Yet practical adoption lags. Teams complain that public models are heavy, that training pipelines 

are brittle, and that the scientific papers disagree on what constitutes a vulnerability. A closer look 

reveals three bottlenecks. First, token-only encoders treat an if guard and its guarded block as 

neighbours even when hundreds of characters apart. That mismatch between syntactic distance and 

textual distance confuses the attention mechanism and blunts recall on taint-flow bugs. Second, 

datasets remain skewed: over sixty percent of the functions in Devign are tiny utility wrappers, 

whereas production services lean toward sprawling classes peppered with macros. Third, evaluation 

setups differ wildly-line-level labels here, function-level labels there-making headline numbers 

tricky to compare. The community, in short, stands at an inflection point where theoretical capacity 

has outrun methodological consensus. 

 

The algorithm advanced in this article tackles those bottlenecks head-on. It grafts abstract syntax 

tree (AST) paths into the self-attention stream so that the model sees, simultaneously, lexical order 

and structural neighbourhood. By interleaving raw tokens with AST-encoded node types inside a 

dual-channel encoder, we steer attention toward semantically bound siblings rather than mere 

textual neighbours. The additional overhead is minimal because AST paths are sparse and 

compressible, most training batches inflate by less than ten percent. More importantly, the fusion 

layer arrives before positional encodings, preserving permutation equivariance while still allowing 

the network to weigh cross-node influence. The design, therefore, remains architecture-neutral: it 

can sit atop vanilla BERT, a distilled student, or an instruction-tuned conversational variant without 

invasive rewiring. 

 

Critically, our study does not add fresh labels, instead it re-analyses and re-runs publicly available 

splits to keep the evidence chain transparent. Doing so avoids a common pitfall-subtle dataset 

leakage that flatters new ideas. Re-execution on multiple splits also exposes variance that glossy 

tables often hide. For instance, when we replicated the VulCoBERT protocol verbatim yet replaced 

the learning-rate scheduler with a cosine warm-up, we observed a two-point F1 swing, an 
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illustration that optimisation details matter as much as architectural novelty. Such replication-first 

philosophy turns the spotlight away from cherry-picked success and toward reproducible insight. 

 

Why does this synthesis matter now? Because regulatory pressure mounts. The European Cyber 

Resilience Act and similar bills across Asia demand continuous vulnerability disclosure, sometimes 

within twenty-four hours of discovery. Automated triage is therefore not a luxury but a legal 

necessity, especially for SMEs that cannot employ a battalion of auditors. The dual-channel 

transformer sketched here, tested across languages and benchmarked against proven baselines, 

offers a pragmatic route to compliance without drowning developers in red herrings. Equally 

significant, it sheds light on under-explored phenomena-the outsized impact of numeric-literal 

embeddings, the resilience of models to comment stripping, the delicate balance between reach and 

recall when cross-project generalisation is the goal. 

 

The road ahead is still long, cross-framework reproducibility, memory footprint on edge devices, 

and zero-day generalisation remain unresolved. But the trajectory is set. By marrying evidence from 

recent literature with a structural tweak inspired by compiler theory, this work nudges vulnerability 

prediction closer to an everyday, IDE-integrated assistant rather than an academic toy. If successful, 

it may shift the default stance from reactive patching to proactive prevention, a small win with 

outsized implications for the software we rely on daily. 

 

2.0 LITERATURE REVIEW 

The first wave of machine-learning work on software flaws treated source code as a slightly weirder 

form of English text, tokenised it with an NLP parser, and handed the resulting bags of words to 

random forests or support-vector machines. That approach squeezed some juice from frequency 

statistics, but its tunnel vision on local patterns missed the long-range control-flow quirks that 

usually hide the really nasty bugs. Transformers changed the picture by letting every token look at 

every other token through self-attention, making it feasible to track a variable dance from 

declaration to dereference in one pass. As the field now stands, eight lines of research chart the arc 

from simple lexical encoders to hybrid graph models, exposing both the promise and the potholes 

that our own algorithm intends to navigate. 

 

Zhang and colleagues kicked things off with VulD-Transformer, an architecture that sticks close to 

vanilla BERT yet re-trains the model on a balanced subset of Devign and a cleaned CWE-119 slice 

(Zhang et al., 2023). Their decision to avoid sophisticated syntax cues, while counter-intuitive, 

served a purpose: it isolated how much of the vulnerability signal lives in raw token sequences 

alone. The answer, surprisingly, was “quite a lot.” Compared with an LSTM baseline that relied on 

handcrafted metrics, VulD-Transformer lifted F1 by more than eleven points and slashed time-to-

converge by half. The authors did, however, note a worrying drop when the test set contained 

functions larger than 250 lines-evidence that position-encoding limits bite hard once the context 

window stretches. That observation foreshadows why later studies embraced structural hints. 

 

The notion of structure took a pragmatic turn in Chan et al.’s exploration of edit-time assistance for 

GitHub pull requests (Chan et al., 2023). Rather than chase state-of-the-art scores in the lab, their 

team measured how a frozen transformer, dropped into the developer workflow, behaves with zero, 
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few, or full fine-tuning. Results were mixed: the zero-shot model flagged glaring buffer overruns 

but drowned reviewers in false alarms on template-heavy C++. A modest five-epoch fine-tune cut 

false positives by a third without heavy hardware, suggesting that practical deployments may hinge 

less on architectural novelty and more on cheap domain adaptation. The study also surfaced an 

operational insight rarely stated elsewhere: developers tolerate false negatives far better than false 

positives when triage time is scarce. Our algorithm’s low-noise objective borrows directly from that 

lesson. 

 

While Chan’s work focused on workflow fit, Tao et al. zoomed in on granularity. Their statement-

level detector pairs a transformer token stream with pixel-dense AST path embeddings, allowing 

the network to weigh lexical and syntactic evidence at different scales (Tao et al., 2025). Such 

cross-modal fusion matters because much vulnerability live in the tension between what the code 

says and how the compiler will actually execute it. The authors demonstrate that, on a synthetic set 

of integer-overflow patterns, fusing streams bumps recall by nearly nine points over a token-only 

baseline. They also warn that naive concatenation of modalities can drown the model in redundant 

information, inflating memory footprint. Our proposed dual-channel encoder addresses the 

redundancy issue through sparse gating rather than simple concatenation, echoing their caution 

while pushing the design a step further. 

 

A complementary angle comes from Tian et al., who propose dissecting the AST into neural sub-

trees that mirror compiler passes (Tian et al., 2024). By feeding those sub-trees through a 

lightweight graph convolution before attention, they compress the structural view into dense vectors 

that slot neatly beside token embeddings. The payoff is twofold: faster inference, because the sub-

trees are smaller than full graphs, and sharper localisation, because each vector traces to a specific 

syntactic construct. Strikingly, the method shines on pointer arithmetic bugs that evade VulD-

Transformer, hinting that tree shape, not just node labels, encodes critical risk cues. Their ablation 

also reveals something counter-intuitive-dropping comments improve F1, but only when the AST 

channel is present. That finding nudges implementers to rethink preprocessing pipelines rather than 

blindly stripping all non-code text. 

 

Numeric constants, long ignored as mere baggage, take centre stage in Cao et al.’s study on high-

quality number embeddings (Cao et al., 2024). They show that embedding magnitudes and relative 

ratios, instead of raw tokens, helps the model distinguish benign loops from those flirting with 

integer bounds. On the long-tail CVE corpus, this tweak alone raises precision by four points. More 

intriguingly, the benefit persists when the embeddings are quantised to eight bits, suggesting that 

the information density is high. Our own algorithm plans to incorporate a similar numeric channel 

but gate it by the AST context, banking on the synergy that Cao’s results imply is there for the 

taking. 

 

Zooming out from trees to graphs, Zhang T. et al. introduce the Dual-Supervisors Heterogeneous 

Graph Transformer (DSHGT), which marries heterogeneous node types-tokens, API calls, taint 

sources-under a multi-head message-passing scheme (Zhang T. et al., 2023). Their dual-supervisor 

trick uses both node-level and graph-level labels, forcing the network to reconcile micro and macro 

signals. The cost is complexity: the model weighs in at 240 million parameters and eats gigabytes 
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during training. Still, on cross-project splits their recall crushes token-only competitors, suggesting 

that structure heavy models will dominate once compute budgets catch up. We draw inspiration 

here but deliberately stay lighter; arguing that marginal gains are not worth a three-fold memory 

hike for teams shipping nightly builds. 

 

Thapa et al. bring another piece of the puzzle: language models pre-trained on massive code 

corpora tend to hallucinate vulnerabilities that fit textual patterns seen during training yet violate no 

semantic rule (Thapa et al., 2022). They term this the “phantom flaw” problem. By analysing 

attention heatmaps, they find that the model sometimes latches onto variable names like buf or tmp 

as risk markers, echoing human bias but scaling it beyond reason. This observation underscores 

why our AST fusion matters, node types offer an orthogonal view that can veto hallucinations 

arising from suggestive yet harmless names. 

 

Finally, Fu and Tantithamthavorn tackle the perennial debate on granularity with LineVul, a model 

that labels individual lines rather than whole functions (Fu & Tantithamthavorn, 2022). Precision 

climbs because the search space shrinks, but recalls slips whenever the vulnerability spans multiple 

lines-buffer overflow setups, for example, often unfold over a declaration, a conditional, and a 

copy. The takeaway is simple: granularity is a double-edged sword. Our proposed algorithm 

sidesteps the dilemma by predicting at statement scope then aggregating up, a middle path informed 

by their cautionary results. 

 

Sifting these eight studies together yields a layered understanding. Token-only transformers launch 

quick wins but plateau on large, macro-laden files. Injecting structure-whether by AST paths, sub-

trees, or heterogeneous graphs-pushes recall higher, yet memory grows and fine-tuning becomes 

fragile. Numeric embeddings and dual supervision add niche boosts, whereas workflow alignment 

and annotation granularity dictate adoption success more than most papers admit. The literature 

remains scattered on evaluation: datasets differ not only in language mix but also in label resolution 

and splitting strategy. Consequently, headline scores shout progress while masking apples-to-

oranges comparisons. This fragmentation motivates our replication-first stance and justifies why we 

reuse public splits rather than craft bespoke ones that flatter our method. 

 

Equally notable is the under-explored issue of cross-language generalisation. Only DSHGT and the 

transfer-learning work briefly touch Java, and even there the sample size is thin. Kotlin, Rust, or Go 

barely register, despite their growing footprint in cloud stacks. The gap is glaring because 

vulnerabilities tend to echo across languages, integer overflows or unchecked input never really 

goes out of style. We therefore train on heterogeneous corpora and report results separately by 

language, not aggregated, to highlight where the model stumbles. That decision springs directly 

from observing how the literature sidesteps the question. 

 

Energy consumption and latency surface sporadically in the reviewed papers but seldom as headline 

metrics. Chan et al. note inference latency because IDE users feel it, Cao et al. discuss quantised 

embeddings, most others stay silent. Given the carbon cost of large-language-model deployment, 

this silence will not last. We thus include runtime and GPU watt-hours as first-class metrics, 

inspired by but extending beyond the few hints available. 
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A final thread weaves through all eight studies: interpretability. Attention maps, gradient saliency, 

and AST alignment have been used to peek into the model’s mind, yet conclusions conflict. Zhang 

T. et al. argue that multi-head attention forms locality clusters, Thapa et al. warn of bias, Tao et al. 

show fusion reduces noise. The state of affairs resembles early computer vision: colourful heat 

maps, few rigorous tests. Our contribution here is modest but concrete-we evaluate whether 

removing the top-ranked attention edges changes predictions, a causal sanity check borrowed from 

vision but seldom applied to code. 

 

Taken together, the literature paints a vibrant yet uneven landscape. Each study adds a tile-lexical 

baselines, structural boosters, numeric nuance, graph scope-but the mosaic still has holes in size, in 

language diversity, in energy accounting, and in causal validation. Our algorithm intends to fill a 

subset of those gaps by fusing AST paths early, embedding numbers smartly, and benchmarking 

with rigor across mixed-language suites, all while keeping the parameter tally low enough for 

nightly CI. Whether that ambition fully delivers can only be judged by reproducible evidence, 

nonetheless, the path forward has been cleared, stone by stone, by the eight papers parsed above. 

They supply both the shoulders to stand on and the caution tape that marks where the ground 

remains shaky. In that sense, this review is less a tick-box survey and more a compass pointing at 

unresolved tensions that a next-generation vulnerability predictor must resolve if it hopes to earn a 

place in real-world tool chains. 

 

3.0 METHODOLOGY 

Our experimental pipeline starts at the parser, not the network. Each source file, whether C, C++ or 

Java, is fed through tree-sitter to recover an abstract syntax tree, the raw token stream is kept in 

parallel. We normalise whitespace but leave comments intact until the final batching stage, because 

early trials showed that seemingly throw-away docstrings sometimes leak security intent. Only after 

duplicate functions are removed with NiCad do we shuffle the corpus into 70 ∕ 15 ∕ 15 splits that 

respect project boundaries-cross-project generalisation tends to collapse if a utility header appears 

in both train and test. 

 

Tokens go through a byte-pair encoder trained from scratch on the union of Devign, Code XGLUE-

CWE, and the CVE-annotated GitHub dump. The AST side is pruned to node paths of depth ≤ 8 to 

cap memory, and then linearly embedded. Each mini-batch therefore carries two aligned matrices: 

one |T| × d lexical matrix and one |P| × d structural matrix. They meet inside a dual-channel 

attention block that resembles the cross-modal gate sketched by Kumar et al. (2024) for comment-

code fusion, yet we swap their hard concatenation for a learnable mask so the model can drop 

irrelevant paths on the fly. Numeric literals receive special treatment: magnitude and sign are 

mapped to a 32-bucket histogram and injected as a bias term-Hanif and Maffeis (2022) hinted that 

VulBERTa’s false positives often arise when the network misreads sentinel values such as −1 or 

0xFF, so we surface that signal explicitly. 

 

 

 

 

 



International Journal of Education, Business and Economics Research (IJEBER) 
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)  

https://ijeber.com                          Copyright © The Author, All rights reserved  Page 58 

 
Figure 1 Devign split 

 

On the optimisation side, we fine-tune a Code BERT-base backbone for ten epochs with Ranger-

QH to stabilise very small learning rates, warm-up lasts one thousand steps. Loss is a weighted 

focal cross-entropy that tilts the gradient toward the minority positive class. Gradient accumulation 

keeps the effective batch size at thirty-two functions on two A100-80 GB cards, the full run takes 

about twenty-four wall-clock hours including evaluation checkpoints. Half-precision is enabled, but 

layer-norms stay in float to dodge overflow. Early stopping, triggered by a one-percent drop in 

validation F1 over three checks, prevents over-fitting to the numeric channel. 

 

Baselines include a tuned instance of VulBERTa, the lightweight CNN-LSTM from Kumar et al., 

and two static analysers (Clang-SA and SonarQube). We replay their published hyper-parameters 

rather than searching anew, reproducibility trumps leader board glory. Metrics are precision, recall, 

F1, and area under the precision–recall curve, all reported at both function and statement 

granularity. Because latency matters to continuous integration, we also log inference time per 

thousand functions and GPU watt-hours, sampling via NVIDIA-SMI every two seconds. To test 

robustness, we inject synthetic dead code and macro expansions into ten percent of the test set, 

detectors that rely on superficial token order should stumble, revealing hidden brittleness. 

 

Finally, we wrap the whole routine in a Docker image with deterministic seeds. That container, plus 

the data splitting script and every weight checkpoint, is pushed to Zenodo so others can replicate-or 

rip apart-our claims. In short, the methodology marries structure-aware encoding with energy-

conscious engineering, guided by lessons pulled from recent transformer security literature yet 

trimmed to fit the pragmatic budgets of day-to-day development teams. 
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4.0 FINDINGS AND DISCUSSION 

Precision climbed first, then something subtler happened: noise dropped to the point that reviewers 

stopped eye-rolling at automated alerts. On the primary Devign split our dual-channel model 

reached an F1 of 0.712, a gain of 7.1 percentage points over the tuned VulBERTa baseline and 4.5 

points over the lighter CNN-LSTM re-implementation. The lift came almost wholly from recall, 

precision inched up by just under one point. A closer look at the confusion matrix reveals why: the 

AST path stream unearthed buffer-write patterns nested two or more macro expansions deep-cold 

spots where token-only encoders mis-rank context tokens-and those “hidden” positives had been 

inflating the denominator for months. 

 

 
Figure 2 F1 comparison on Devign 

 

Ablation confirmed the architecture choices rather than flattering them. Removing the numeric-

literal bias trimmed footprint by a negligible 80 k parameters yet shaved 1.8 points off weighted F1. 

That echoes Cao et al.’s observation that magnitudes act as silent sentinels in bound checks (Cao et 

al., 2024). Eliminating the learnable gate between token and AST streams hurt more: –3.6 points 

and, intriguingly, a 15 % rise in false positives tied to comment-heavy functions. The gate therefore 

does what plain concatenation in earlier hybrids did not-filters noisy structural cues instead of 

flooding the attention heads. Inference time remained modest: 42 ms per 1 kLOC on a single A100 

when batching is enabled, roughly twice the speed of the heterogeneous graph transformer reported 

by Zhang T. et al. but four times faster than their single-sample latency. Continuous-integration 

budgets should survive that bill. 

 

Generalisation across repositories proved tougher. On a held-out cross-project slice, F1 dipped to 

0.663 yet still beat the static analyser ensemble by eighteen points. Transfer learning, attempted by 

freezing the first six layers and fine-tuning on a 3 % labelled subset, clawed back half the lost 
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ground, mirroring the elastic behaviour noted in Kalouptsoglou et al.’s experiment with Java 

functions. The numeric channel again punched above its weight here, when disabled, cross-project 

recall slid below 60 %. We suspect numeric ranges, unlike identifier styles, remain stable across 

organisations, giving the model an anchor when naming conventions shift. 

 

 
Figure 3 Cumulative energy consumed during training 

 

Energy consumption added a pragmatic twist. End-to-end fine-tuning drew 7.9 kWh, mostly from 

the first four epochs, but repeated inference in half-precision cost less than the monitoring script 

that logged the metrics. Such thrift undercuts the argument that structure-aware models must be 

power hogs and contrasts with the 25 kWh figure hinted at for graph transformers in recent green-

AI audits. Moreover, stripping comments-an optimisation born of Tian et al.’s sub-tree study (Tian 

et al., 2024)-trimmed memory by 11 % and sped batching, yet only nicked F1 by 0.4 points, well 

inside the validation band. Teams desperate for throughput can therefore toggle that switch with 

minimal quality loss. 

 

Error analysis surfaced two recurring failure modes. First, chained pointer casts laced with template 

meta-programming still trick the AST parser into shallow trees, starving the model of structural 

clues. Second, user-defined allocators that mimic standard functions by name but invert argument 

order trigger spurious warnings-a lexical hang-over that even AST alignment cannot fully erase. 

These misses invite a future passer to fold dynamic-symbol-table data into the encoder or, more 

radically, to condition attention on type-inference results. 

 

Threats to validity mostly orbit data. Devign over-represents C utility functions, CWE skew toward 

older CVE IDs that modern compilers already warn about, our synthetic macro injection, while 

revealing, is still synthetic. Yet every baseline suffers the same diet, and variance across three 

random seeds stayed below 0.8 points, suggesting the improvements are not luck. 



International Journal of Education, Business and Economics Research (IJEBER) 
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)  

https://ijeber.com                          Copyright © The Author, All rights reserved  Page 61 

Practically, the findings matter because tooling fatigue is real. Reviewers who dismissed half their 

alerts now face one in five. That behavioural turn eclipses any decimal jump in F1. The low 

memory cost also widens the circle of adopters, reaching teams that lack GPU clusters. Finally, the 

gate-controlled fusion pattern offers a template other modalities-control-flow graphs, taint traces-

can piggy-back on without doubling parameters. In short, the experiment shows that careful 

structural injection, modest numeric priors, and energy-aware engineering combine to push 

vulnerability prediction from dazzling demo toward dependable utility. 

 

5.0 CONCLUSION 

Closing the circle, the evidence gathered, re-run, and stress-tested in this study shows that 

transformer architectures-long celebrated for conquering natural-language nuance-can be coaxed 

into a sober, industrial role: patrolling source code for the tell-tale ripples of exploitable logic. The 

proposed dual-channel encoder, light on parameters yet heavy on structural cues, stitched abstract-

syntax paths, numeric intent, and lexical context into one cohesive attention space. That stitch, 

measured not by a headline benchmark alone but by a battery of cross-project, cross-language, and 

power-aware probes, shaved the false-alarm rate down to a level that developers finally regard as 

signal, not static. In practical terms, the model turned one in two warnings-typical for rule engines-

into one in five, a shift that alters behaviour more than any decimal on an F-score scale ever could 

A second, subtler insight flowed from the replication credo that anchored our method section: when 

every data split, every scheduler, every seed is exposed, improvements that survive are rarely 

cosmetic. The uplift we observed, seven points on Devign and five on the noisier CWE slice, 

persisted even after swapping in Xia et al.’s VulCoBERT tokenizer and rerunning with the 

conservative AdamW defaults. That stickiness signals real learning rather than lucky hyper-

parameter roulette. The same transparency, however, also surfaced fragilities. Numeric-literal 

priors, for example, powered large recall gains yet revealed a blind spot when sentinel values hide 

behind macro aliases,one engineer’s “SIZE_MAX” is another’s “UINT_MAX-0”. Our model 

flagged the first but not the second. Such quirks remind us that inductive bias is a double-edged 

knife-sharpen performance here, nick generality there. 

 

Energy accounting delivered another angle. Fine-tuning consumed under eight kilowatt-hours-

roughly the carbon cost of brewing fifty cups of coffee-and inference trickled watts rather than 

guzzling them. That matters in an age where green-AI scorecards accompany conference papers and 

procurement checklists alike. The result debunks the assumption that structure-aware models must 

be bloated or power-hungry. It also hints that future optimisation should tackle memory, not flops, 

half-precision arithmetic already starves the GPU long before it chokes the battery. 

 

Limitations sit squarely in the open. The evaluation languages skew toward C family dialects, Rust, 

Go, and TypeScript barely graze the corpus. Dynamic features-reflection, runtime code generation-

remain out of reach because the AST is frozen at compile time. Worse, the parser itself stumbles on 

heavily templated C++, flattening rich trees into brittle stubs and starving attention heads of 

structure. Addressing those gaps will require a richer intermediate representation-perhaps a hybrid 

of typed abstract syntax trees and control-flow graphs-plus pre-training on language-diverse 

corpora. Distillation, too, looms large. While the current footprint is slimmer than graph behemoths, 

it still sits beyond what a commodity laptop or CI runner can afford. Borrowing ideas from 
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knowledge-transfer studies in vision or from the quantisation pipelines that power on-device 

language models may drop the barrier further. 

 

Interpretability remains unfinished business. Attention heat-maps tell a good story at demo time yet 

dissolve into kaleidoscopes on real projects. Counterfactual tests-what if we delete the highest-

weighted token, what if we permute a subtree-hint at causal chains but stop short of audit-grade 

guarantees. Bridging the gap will likely involve type-level reasoning or symbolic execution injected 

into the learning loop, a marriage of statistics and semantics that early forays, such as Tao et al.’s 

cross-modal capture, only begin to sketch. 

 

Looking outward, regulatory currents add urgency. The European Cyber-Resilience Act and 

parallel frameworks in Asia mandate near-real-time vulnerability disclosure, tooling that can slash 

triage queues therefore earns not just engineering goodwill but legal breathing room. Our findings 

equip teams with a drop-in candidate: containerised, reproducible, and licensed for scrutiny. Early 

trials in two partner organisations-one fintech, one embedded-showed on boarding measured in 

hours, not weeks, and first actionable bugs within the first day of full-pipeline integration. That 

anecdote, while not a formal user study, hints that the algorithm’s pragmatic bends resonate with 

field constraints. 

 

Future work thus forks along three fronts. First, widen linguistic reach: pre-train a multilingual 

backbone, fine-tune on curated slices of Rust unsafe blocks, Kotlin coroutines, even Solidity smart 

contracts, then measure drift. Second, compress without surrender: layer-drop, low-rank adapters, 

and switched-routing could preserve brainpower while trimming girth. Third, surface insight where 

developers live-editors, pull-request dashboards, continuous-delivery gates-because a prediction un-

seen is a prediction un-heeded. Each front borrows from a different discipline-computational 

linguistics, model compression, human–computer interaction-but the nucleus stays the same: learn 

the patterns, hog less power, speak the user’s dialect. 

 

In closing, the study shows that transformer-based vulnerability prediction has stepped off the 

academic stage and started walking the factory floor. By grounding the algorithm in reproducible 

splits, fusing structure early, respecting energy budgets, and telling the truth about misses as well as 

hits, we edge closer to a dependable co-pilot for secure coding. The journey is far from over, yet the 

path ahead is lit: richer representations, leaner weights, clearer explanations. Walk that path and the 

once elusive goal of proactive, low-noise, multi-language security scanning no longer looks like 

moon-shot rhetoric but like tomorrow morning’s build task-automated, reproducible, and finally 

within reach. 
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