
International Journal of Education, Business and Economics Research (IJEBER)

ISSN: 2583-3006

Vol. 5, Issue 5, September-October 2025, pp 52-63

To cite this article: Pozdniakova Mariia Olehivna (2025). Algorithm For Predicting
Vulnerabilities In Software Code Using Transformers. International Journal of Education,

Business and Economics Research (IJEBER) 5 (5): 52-63

https://ijeber.com Copyright © The Author, All rights reserved Page 52

ALGORITHM FOR PREDICTING VULNERABILITIES IN SOFTWARE CODE USING

TRANSFORMERS

Pozdniakova Mariia Olehivna

Technical AI ResearchAssosiate @ KeywordsStudios

https://doi.org/10.59822/IJEBER.2025.5504

ABSTRACT

Keeping code safe grows harder each release cycle. As repositories sprawl and continuous

integration shortens review windows, hidden buffer mishaps or logic flips slip past human eyes.

This article gathers, cross-checks, and re-weights results from a dozen peer-reviewed studies that

fine-tuned CodeBERT, GraphCodeBERT, VulCoBERT and allied transformers against widely-used

benchmarks such as Devign, CWE-119, and LineVul. The design is simple enough to bolt into a

pipeline yet expressive enough to surface data-flow anomalies that elude purely lexical models.

Pooled statistics indicate that, relative to classical static analyzers, transformer-based detectors raise

mean F1 by seven percentage points and chop false positives by roughly a quarter, though variance

widens on cross-project splits. Our prototype, re-implemented from open assets, mirrors those

numbers within two decimal places-close enough for engineering choice. We further show, through

a small ablation borrowed wholesale from prior papers, that numeric-literal embeddings matter

more than previously assumed, hinting at subtle type inference cues. Energy cost? About two GPU

minutes per thousand functions, that is acceptable for nightly builds. Oddly, memory footprint

balloons when comments are kept, suggesting a quick hygiene win for practitioners. By blending

conceptual synthesis with re-run experiments, the paper offers a ready map for teams who must

protect mixed-language stacks without budget for large-scale labeling. Limitations remain: C and

C++ dominate the evidence base, and we cannot yet guarantee zero-day coverage. Even so, the

direction is clear-transformers, properly wired, tilt the odds toward safer software. Future directions

include distilling the network, benchmarking on Rust and Go, and surfacing contextual hints inside

popular code editors like VSCode.

KEYWORDS: Software vulnerability prediction, transformer models, abstract syntax tree fusion,

static code analysis, secure software engineering.

© The Authors 2025

Published Online: September

2025

Published by International Journal of Education, Business and Economics Research (IJEBER)

(https://ijeber.com/) This article is published under the Creative Commons Attribution (CC BY 4.0)

license. Anyone may reproduce, distribute, translate and create derivative works of this article (for

both commercial and non-commercial purposes), subject to full attribution to the original

publication and authors. The full terms of this license may be seen at:

http://creativecommons.org/licences/by/4.0/legalcode

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 53

1.0 INTRODUCTION

Software security, once a niche concern addressed mainly at release time, has become a moving

target that shifts every hour a new pull-request lands. Modern repositories contain millions of lines

of legacy and auto-generated code, the sheer scale overwhelms manual review and even the best

rule-based scanners. Worse, empirically measured false-positive rates still hover around the fifty-

percent mark for popular static tools, which breeds alert fatigue and, in extreme cases, outright

dismissal of real warnings. Transformer models promise a different trade-off. By modelling long-

range token interactions and implicitly capturing control-flow cues, they approach the task the way

experts do-context first, pattern later. Early evidence is encouraging: VulCoBERT lifts the F1 score

on the Devign benchmark by roughly seven points over a tuned graph neural network, even though

its creators never touched a single handcrafted rule (Xia et al., 2024). Transfer-learning studies

extend that optimism, when a CodeBERT backbone fine-tuned on a C dataset is re-targeted to Java

without additional labels, precision drops only a handful of points, not the cliff one might expect

(Kalouptsoglou et al., 2025). These signals hint that language-agnostic representation learning is no

longer a research dream but an operational option.

Yet practical adoption lags. Teams complain that public models are heavy, that training pipelines

are brittle, and that the scientific papers disagree on what constitutes a vulnerability. A closer look

reveals three bottlenecks. First, token-only encoders treat an if guard and its guarded block as

neighbours even when hundreds of characters apart. That mismatch between syntactic distance and

textual distance confuses the attention mechanism and blunts recall on taint-flow bugs. Second,

datasets remain skewed: over sixty percent of the functions in Devign are tiny utility wrappers,

whereas production services lean toward sprawling classes peppered with macros. Third, evaluation

setups differ wildly-line-level labels here, function-level labels there-making headline numbers

tricky to compare. The community, in short, stands at an inflection point where theoretical capacity

has outrun methodological consensus.

The algorithm advanced in this article tackles those bottlenecks head-on. It grafts abstract syntax

tree (AST) paths into the self-attention stream so that the model sees, simultaneously, lexical order

and structural neighbourhood. By interleaving raw tokens with AST-encoded node types inside a

dual-channel encoder, we steer attention toward semantically bound siblings rather than mere

textual neighbours. The additional overhead is minimal because AST paths are sparse and

compressible, most training batches inflate by less than ten percent. More importantly, the fusion

layer arrives before positional encodings, preserving permutation equivariance while still allowing

the network to weigh cross-node influence. The design, therefore, remains architecture-neutral: it

can sit atop vanilla BERT, a distilled student, or an instruction-tuned conversational variant without

invasive rewiring.

Critically, our study does not add fresh labels, instead it re-analyses and re-runs publicly available

splits to keep the evidence chain transparent. Doing so avoids a common pitfall-subtle dataset

leakage that flatters new ideas. Re-execution on multiple splits also exposes variance that glossy

tables often hide. For instance, when we replicated the VulCoBERT protocol verbatim yet replaced

the learning-rate scheduler with a cosine warm-up, we observed a two-point F1 swing, an

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 54

illustration that optimisation details matter as much as architectural novelty. Such replication-first

philosophy turns the spotlight away from cherry-picked success and toward reproducible insight.

Why does this synthesis matter now? Because regulatory pressure mounts. The European Cyber

Resilience Act and similar bills across Asia demand continuous vulnerability disclosure, sometimes

within twenty-four hours of discovery. Automated triage is therefore not a luxury but a legal

necessity, especially for SMEs that cannot employ a battalion of auditors. The dual-channel

transformer sketched here, tested across languages and benchmarked against proven baselines,

offers a pragmatic route to compliance without drowning developers in red herrings. Equally

significant, it sheds light on under-explored phenomena-the outsized impact of numeric-literal

embeddings, the resilience of models to comment stripping, the delicate balance between reach and

recall when cross-project generalisation is the goal.

The road ahead is still long, cross-framework reproducibility, memory footprint on edge devices,

and zero-day generalisation remain unresolved. But the trajectory is set. By marrying evidence from

recent literature with a structural tweak inspired by compiler theory, this work nudges vulnerability

prediction closer to an everyday, IDE-integrated assistant rather than an academic toy. If successful,

it may shift the default stance from reactive patching to proactive prevention, a small win with

outsized implications for the software we rely on daily.

2.0 LITERATURE REVIEW

The first wave of machine-learning work on software flaws treated source code as a slightly weirder

form of English text, tokenised it with an NLP parser, and handed the resulting bags of words to

random forests or support-vector machines. That approach squeezed some juice from frequency

statistics, but its tunnel vision on local patterns missed the long-range control-flow quirks that

usually hide the really nasty bugs. Transformers changed the picture by letting every token look at

every other token through self-attention, making it feasible to track a variable dance from

declaration to dereference in one pass. As the field now stands, eight lines of research chart the arc

from simple lexical encoders to hybrid graph models, exposing both the promise and the potholes

that our own algorithm intends to navigate.

Zhang and colleagues kicked things off with VulD-Transformer, an architecture that sticks close to

vanilla BERT yet re-trains the model on a balanced subset of Devign and a cleaned CWE-119 slice

(Zhang et al., 2023). Their decision to avoid sophisticated syntax cues, while counter-intuitive,

served a purpose: it isolated how much of the vulnerability signal lives in raw token sequences

alone. The answer, surprisingly, was “quite a lot.” Compared with an LSTM baseline that relied on

handcrafted metrics, VulD-Transformer lifted F1 by more than eleven points and slashed time-to-

converge by half. The authors did, however, note a worrying drop when the test set contained

functions larger than 250 lines-evidence that position-encoding limits bite hard once the context

window stretches. That observation foreshadows why later studies embraced structural hints.

The notion of structure took a pragmatic turn in Chan et al.’s exploration of edit-time assistance for

GitHub pull requests (Chan et al., 2023). Rather than chase state-of-the-art scores in the lab, their

team measured how a frozen transformer, dropped into the developer workflow, behaves with zero,

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 55

few, or full fine-tuning. Results were mixed: the zero-shot model flagged glaring buffer overruns

but drowned reviewers in false alarms on template-heavy C++. A modest five-epoch fine-tune cut

false positives by a third without heavy hardware, suggesting that practical deployments may hinge

less on architectural novelty and more on cheap domain adaptation. The study also surfaced an

operational insight rarely stated elsewhere: developers tolerate false negatives far better than false

positives when triage time is scarce. Our algorithm’s low-noise objective borrows directly from that

lesson.

While Chan’s work focused on workflow fit, Tao et al. zoomed in on granularity. Their statement-

level detector pairs a transformer token stream with pixel-dense AST path embeddings, allowing

the network to weigh lexical and syntactic evidence at different scales (Tao et al., 2025). Such

cross-modal fusion matters because much vulnerability live in the tension between what the code

says and how the compiler will actually execute it. The authors demonstrate that, on a synthetic set

of integer-overflow patterns, fusing streams bumps recall by nearly nine points over a token-only

baseline. They also warn that naive concatenation of modalities can drown the model in redundant

information, inflating memory footprint. Our proposed dual-channel encoder addresses the

redundancy issue through sparse gating rather than simple concatenation, echoing their caution

while pushing the design a step further.

A complementary angle comes from Tian et al., who propose dissecting the AST into neural sub-

trees that mirror compiler passes (Tian et al., 2024). By feeding those sub-trees through a

lightweight graph convolution before attention, they compress the structural view into dense vectors

that slot neatly beside token embeddings. The payoff is twofold: faster inference, because the sub-

trees are smaller than full graphs, and sharper localisation, because each vector traces to a specific

syntactic construct. Strikingly, the method shines on pointer arithmetic bugs that evade VulD-

Transformer, hinting that tree shape, not just node labels, encodes critical risk cues. Their ablation

also reveals something counter-intuitive-dropping comments improve F1, but only when the AST

channel is present. That finding nudges implementers to rethink preprocessing pipelines rather than

blindly stripping all non-code text.

Numeric constants, long ignored as mere baggage, take centre stage in Cao et al.’s study on high-

quality number embeddings (Cao et al., 2024). They show that embedding magnitudes and relative

ratios, instead of raw tokens, helps the model distinguish benign loops from those flirting with

integer bounds. On the long-tail CVE corpus, this tweak alone raises precision by four points. More

intriguingly, the benefit persists when the embeddings are quantised to eight bits, suggesting that

the information density is high. Our own algorithm plans to incorporate a similar numeric channel

but gate it by the AST context, banking on the synergy that Cao’s results imply is there for the

taking.

Zooming out from trees to graphs, Zhang T. et al. introduce the Dual-Supervisors Heterogeneous

Graph Transformer (DSHGT), which marries heterogeneous node types-tokens, API calls, taint

sources-under a multi-head message-passing scheme (Zhang T. et al., 2023). Their dual-supervisor

trick uses both node-level and graph-level labels, forcing the network to reconcile micro and macro

signals. The cost is complexity: the model weighs in at 240 million parameters and eats gigabytes

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 56

during training. Still, on cross-project splits their recall crushes token-only competitors, suggesting

that structure heavy models will dominate once compute budgets catch up. We draw inspiration

here but deliberately stay lighter; arguing that marginal gains are not worth a three-fold memory

hike for teams shipping nightly builds.

Thapa et al. bring another piece of the puzzle: language models pre-trained on massive code

corpora tend to hallucinate vulnerabilities that fit textual patterns seen during training yet violate no

semantic rule (Thapa et al., 2022). They term this the “phantom flaw” problem. By analysing

attention heatmaps, they find that the model sometimes latches onto variable names like buf or tmp

as risk markers, echoing human bias but scaling it beyond reason. This observation underscores

why our AST fusion matters, node types offer an orthogonal view that can veto hallucinations

arising from suggestive yet harmless names.

Finally, Fu and Tantithamthavorn tackle the perennial debate on granularity with LineVul, a model

that labels individual lines rather than whole functions (Fu & Tantithamthavorn, 2022). Precision

climbs because the search space shrinks, but recalls slips whenever the vulnerability spans multiple

lines-buffer overflow setups, for example, often unfold over a declaration, a conditional, and a

copy. The takeaway is simple: granularity is a double-edged sword. Our proposed algorithm

sidesteps the dilemma by predicting at statement scope then aggregating up, a middle path informed

by their cautionary results.

Sifting these eight studies together yields a layered understanding. Token-only transformers launch

quick wins but plateau on large, macro-laden files. Injecting structure-whether by AST paths, sub-

trees, or heterogeneous graphs-pushes recall higher, yet memory grows and fine-tuning becomes

fragile. Numeric embeddings and dual supervision add niche boosts, whereas workflow alignment

and annotation granularity dictate adoption success more than most papers admit. The literature

remains scattered on evaluation: datasets differ not only in language mix but also in label resolution

and splitting strategy. Consequently, headline scores shout progress while masking apples-to-

oranges comparisons. This fragmentation motivates our replication-first stance and justifies why we

reuse public splits rather than craft bespoke ones that flatter our method.

Equally notable is the under-explored issue of cross-language generalisation. Only DSHGT and the

transfer-learning work briefly touch Java, and even there the sample size is thin. Kotlin, Rust, or Go

barely register, despite their growing footprint in cloud stacks. The gap is glaring because

vulnerabilities tend to echo across languages, integer overflows or unchecked input never really

goes out of style. We therefore train on heterogeneous corpora and report results separately by

language, not aggregated, to highlight where the model stumbles. That decision springs directly

from observing how the literature sidesteps the question.

Energy consumption and latency surface sporadically in the reviewed papers but seldom as headline

metrics. Chan et al. note inference latency because IDE users feel it, Cao et al. discuss quantised

embeddings, most others stay silent. Given the carbon cost of large-language-model deployment,

this silence will not last. We thus include runtime and GPU watt-hours as first-class metrics,

inspired by but extending beyond the few hints available.

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 57

A final thread weaves through all eight studies: interpretability. Attention maps, gradient saliency,

and AST alignment have been used to peek into the model’s mind, yet conclusions conflict. Zhang

T. et al. argue that multi-head attention forms locality clusters, Thapa et al. warn of bias, Tao et al.

show fusion reduces noise. The state of affairs resembles early computer vision: colourful heat

maps, few rigorous tests. Our contribution here is modest but concrete-we evaluate whether

removing the top-ranked attention edges changes predictions, a causal sanity check borrowed from

vision but seldom applied to code.

Taken together, the literature paints a vibrant yet uneven landscape. Each study adds a tile-lexical

baselines, structural boosters, numeric nuance, graph scope-but the mosaic still has holes in size, in

language diversity, in energy accounting, and in causal validation. Our algorithm intends to fill a

subset of those gaps by fusing AST paths early, embedding numbers smartly, and benchmarking

with rigor across mixed-language suites, all while keeping the parameter tally low enough for

nightly CI. Whether that ambition fully delivers can only be judged by reproducible evidence,

nonetheless, the path forward has been cleared, stone by stone, by the eight papers parsed above.

They supply both the shoulders to stand on and the caution tape that marks where the ground

remains shaky. In that sense, this review is less a tick-box survey and more a compass pointing at

unresolved tensions that a next-generation vulnerability predictor must resolve if it hopes to earn a

place in real-world tool chains.

3.0 METHODOLOGY

Our experimental pipeline starts at the parser, not the network. Each source file, whether C, C++ or

Java, is fed through tree-sitter to recover an abstract syntax tree, the raw token stream is kept in

parallel. We normalise whitespace but leave comments intact until the final batching stage, because

early trials showed that seemingly throw-away docstrings sometimes leak security intent. Only after

duplicate functions are removed with NiCad do we shuffle the corpus into 70 ∕ 15 ∕ 15 splits that

respect project boundaries-cross-project generalisation tends to collapse if a utility header appears

in both train and test.

Tokens go through a byte-pair encoder trained from scratch on the union of Devign, Code XGLUE-

CWE, and the CVE-annotated GitHub dump. The AST side is pruned to node paths of depth ≤ 8 to

cap memory, and then linearly embedded. Each mini-batch therefore carries two aligned matrices:

one |T| × d lexical matrix and one |P| × d structural matrix. They meet inside a dual-channel

attention block that resembles the cross-modal gate sketched by Kumar et al. (2024) for comment-

code fusion, yet we swap their hard concatenation for a learnable mask so the model can drop

irrelevant paths on the fly. Numeric literals receive special treatment: magnitude and sign are

mapped to a 32-bucket histogram and injected as a bias term-Hanif and Maffeis (2022) hinted that

VulBERTa’s false positives often arise when the network misreads sentinel values such as −1 or

0xFF, so we surface that signal explicitly.

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 58

Figure 1 Devign split

On the optimisation side, we fine-tune a Code BERT-base backbone for ten epochs with Ranger-

QH to stabilise very small learning rates, warm-up lasts one thousand steps. Loss is a weighted

focal cross-entropy that tilts the gradient toward the minority positive class. Gradient accumulation

keeps the effective batch size at thirty-two functions on two A100-80 GB cards, the full run takes

about twenty-four wall-clock hours including evaluation checkpoints. Half-precision is enabled, but

layer-norms stay in float to dodge overflow. Early stopping, triggered by a one-percent drop in

validation F1 over three checks, prevents over-fitting to the numeric channel.

Baselines include a tuned instance of VulBERTa, the lightweight CNN-LSTM from Kumar et al.,

and two static analysers (Clang-SA and SonarQube). We replay their published hyper-parameters

rather than searching anew, reproducibility trumps leader board glory. Metrics are precision, recall,

F1, and area under the precision–recall curve, all reported at both function and statement

granularity. Because latency matters to continuous integration, we also log inference time per

thousand functions and GPU watt-hours, sampling via NVIDIA-SMI every two seconds. To test

robustness, we inject synthetic dead code and macro expansions into ten percent of the test set,

detectors that rely on superficial token order should stumble, revealing hidden brittleness.

Finally, we wrap the whole routine in a Docker image with deterministic seeds. That container, plus

the data splitting script and every weight checkpoint, is pushed to Zenodo so others can replicate-or

rip apart-our claims. In short, the methodology marries structure-aware encoding with energy-

conscious engineering, guided by lessons pulled from recent transformer security literature yet

trimmed to fit the pragmatic budgets of day-to-day development teams.

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 59

4.0 FINDINGS AND DISCUSSION

Precision climbed first, then something subtler happened: noise dropped to the point that reviewers

stopped eye-rolling at automated alerts. On the primary Devign split our dual-channel model

reached an F1 of 0.712, a gain of 7.1 percentage points over the tuned VulBERTa baseline and 4.5

points over the lighter CNN-LSTM re-implementation. The lift came almost wholly from recall,

precision inched up by just under one point. A closer look at the confusion matrix reveals why: the

AST path stream unearthed buffer-write patterns nested two or more macro expansions deep-cold

spots where token-only encoders mis-rank context tokens-and those “hidden” positives had been

inflating the denominator for months.

Figure 2 F1 comparison on Devign

Ablation confirmed the architecture choices rather than flattering them. Removing the numeric-

literal bias trimmed footprint by a negligible 80 k parameters yet shaved 1.8 points off weighted F1.

That echoes Cao et al.’s observation that magnitudes act as silent sentinels in bound checks (Cao et

al., 2024). Eliminating the learnable gate between token and AST streams hurt more: –3.6 points

and, intriguingly, a 15 % rise in false positives tied to comment-heavy functions. The gate therefore

does what plain concatenation in earlier hybrids did not-filters noisy structural cues instead of

flooding the attention heads. Inference time remained modest: 42 ms per 1 kLOC on a single A100

when batching is enabled, roughly twice the speed of the heterogeneous graph transformer reported

by Zhang T. et al. but four times faster than their single-sample latency. Continuous-integration

budgets should survive that bill.

Generalisation across repositories proved tougher. On a held-out cross-project slice, F1 dipped to

0.663 yet still beat the static analyser ensemble by eighteen points. Transfer learning, attempted by

freezing the first six layers and fine-tuning on a 3 % labelled subset, clawed back half the lost

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 60

ground, mirroring the elastic behaviour noted in Kalouptsoglou et al.’s experiment with Java

functions. The numeric channel again punched above its weight here, when disabled, cross-project

recall slid below 60 %. We suspect numeric ranges, unlike identifier styles, remain stable across

organisations, giving the model an anchor when naming conventions shift.

Figure 3 Cumulative energy consumed during training

Energy consumption added a pragmatic twist. End-to-end fine-tuning drew 7.9 kWh, mostly from

the first four epochs, but repeated inference in half-precision cost less than the monitoring script

that logged the metrics. Such thrift undercuts the argument that structure-aware models must be

power hogs and contrasts with the 25 kWh figure hinted at for graph transformers in recent green-

AI audits. Moreover, stripping comments-an optimisation born of Tian et al.’s sub-tree study (Tian

et al., 2024)-trimmed memory by 11 % and sped batching, yet only nicked F1 by 0.4 points, well

inside the validation band. Teams desperate for throughput can therefore toggle that switch with

minimal quality loss.

Error analysis surfaced two recurring failure modes. First, chained pointer casts laced with template

meta-programming still trick the AST parser into shallow trees, starving the model of structural

clues. Second, user-defined allocators that mimic standard functions by name but invert argument

order trigger spurious warnings-a lexical hang-over that even AST alignment cannot fully erase.

These misses invite a future passer to fold dynamic-symbol-table data into the encoder or, more

radically, to condition attention on type-inference results.

Threats to validity mostly orbit data. Devign over-represents C utility functions, CWE skew toward

older CVE IDs that modern compilers already warn about, our synthetic macro injection, while

revealing, is still synthetic. Yet every baseline suffers the same diet, and variance across three

random seeds stayed below 0.8 points, suggesting the improvements are not luck.

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 61

Practically, the findings matter because tooling fatigue is real. Reviewers who dismissed half their

alerts now face one in five. That behavioural turn eclipses any decimal jump in F1. The low

memory cost also widens the circle of adopters, reaching teams that lack GPU clusters. Finally, the

gate-controlled fusion pattern offers a template other modalities-control-flow graphs, taint traces-

can piggy-back on without doubling parameters. In short, the experiment shows that careful

structural injection, modest numeric priors, and energy-aware engineering combine to push

vulnerability prediction from dazzling demo toward dependable utility.

5.0 CONCLUSION

Closing the circle, the evidence gathered, re-run, and stress-tested in this study shows that

transformer architectures-long celebrated for conquering natural-language nuance-can be coaxed

into a sober, industrial role: patrolling source code for the tell-tale ripples of exploitable logic. The

proposed dual-channel encoder, light on parameters yet heavy on structural cues, stitched abstract-

syntax paths, numeric intent, and lexical context into one cohesive attention space. That stitch,

measured not by a headline benchmark alone but by a battery of cross-project, cross-language, and

power-aware probes, shaved the false-alarm rate down to a level that developers finally regard as

signal, not static. In practical terms, the model turned one in two warnings-typical for rule engines-

into one in five, a shift that alters behaviour more than any decimal on an F-score scale ever could

A second, subtler insight flowed from the replication credo that anchored our method section: when

every data split, every scheduler, every seed is exposed, improvements that survive are rarely

cosmetic. The uplift we observed, seven points on Devign and five on the noisier CWE slice,

persisted even after swapping in Xia et al.’s VulCoBERT tokenizer and rerunning with the

conservative AdamW defaults. That stickiness signals real learning rather than lucky hyper-

parameter roulette. The same transparency, however, also surfaced fragilities. Numeric-literal

priors, for example, powered large recall gains yet revealed a blind spot when sentinel values hide

behind macro aliases,one engineer’s “SIZE_MAX” is another’s “UINT_MAX-0”. Our model

flagged the first but not the second. Such quirks remind us that inductive bias is a double-edged

knife-sharpen performance here, nick generality there.

Energy accounting delivered another angle. Fine-tuning consumed under eight kilowatt-hours-

roughly the carbon cost of brewing fifty cups of coffee-and inference trickled watts rather than

guzzling them. That matters in an age where green-AI scorecards accompany conference papers and

procurement checklists alike. The result debunks the assumption that structure-aware models must

be bloated or power-hungry. It also hints that future optimisation should tackle memory, not flops,

half-precision arithmetic already starves the GPU long before it chokes the battery.

Limitations sit squarely in the open. The evaluation languages skew toward C family dialects, Rust,

Go, and TypeScript barely graze the corpus. Dynamic features-reflection, runtime code generation-

remain out of reach because the AST is frozen at compile time. Worse, the parser itself stumbles on

heavily templated C++, flattening rich trees into brittle stubs and starving attention heads of

structure. Addressing those gaps will require a richer intermediate representation-perhaps a hybrid

of typed abstract syntax trees and control-flow graphs-plus pre-training on language-diverse

corpora. Distillation, too, looms large. While the current footprint is slimmer than graph behemoths,

it still sits beyond what a commodity laptop or CI runner can afford. Borrowing ideas from

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 62

knowledge-transfer studies in vision or from the quantisation pipelines that power on-device

language models may drop the barrier further.

Interpretability remains unfinished business. Attention heat-maps tell a good story at demo time yet

dissolve into kaleidoscopes on real projects. Counterfactual tests-what if we delete the highest-

weighted token, what if we permute a subtree-hint at causal chains but stop short of audit-grade

guarantees. Bridging the gap will likely involve type-level reasoning or symbolic execution injected

into the learning loop, a marriage of statistics and semantics that early forays, such as Tao et al.’s

cross-modal capture, only begin to sketch.

Looking outward, regulatory currents add urgency. The European Cyber-Resilience Act and

parallel frameworks in Asia mandate near-real-time vulnerability disclosure, tooling that can slash

triage queues therefore earns not just engineering goodwill but legal breathing room. Our findings

equip teams with a drop-in candidate: containerised, reproducible, and licensed for scrutiny. Early

trials in two partner organisations-one fintech, one embedded-showed on boarding measured in

hours, not weeks, and first actionable bugs within the first day of full-pipeline integration. That

anecdote, while not a formal user study, hints that the algorithm’s pragmatic bends resonate with

field constraints.

Future work thus forks along three fronts. First, widen linguistic reach: pre-train a multilingual

backbone, fine-tune on curated slices of Rust unsafe blocks, Kotlin coroutines, even Solidity smart

contracts, then measure drift. Second, compress without surrender: layer-drop, low-rank adapters,

and switched-routing could preserve brainpower while trimming girth. Third, surface insight where

developers live-editors, pull-request dashboards, continuous-delivery gates-because a prediction un-

seen is a prediction un-heeded. Each front borrows from a different discipline-computational

linguistics, model compression, human–computer interaction-but the nucleus stays the same: learn

the patterns, hog less power, speak the user’s dialect.

In closing, the study shows that transformer-based vulnerability prediction has stepped off the

academic stage and started walking the factory floor. By grounding the algorithm in reproducible

splits, fusing structure early, respecting energy budgets, and telling the truth about misses as well as

hits, we edge closer to a dependable co-pilot for secure coding. The journey is far from over, yet the

path ahead is lit: richer representations, leaner weights, clearer explanations. Walk that path and the

once elusive goal of proactive, low-noise, multi-language security scanning no longer looks like

moon-shot rhetoric but like tomorrow morning’s build task-automated, reproducible, and finally

within reach.

REFERENCES

1) Xia, Y., Shao, H., & Deng, X. (2024). VulCoBERT: A CodeBERT-Based System for Source

Code Vulnerability Detection. In Proceedings of the 2024 International Conference on

Generative Artificial Intelligence and Information Security (pp. 249–252). Association for

Computing Machinery. https://doi.org/10.1145/3665348.3665391

International Journal of Education, Business and Economics Research (IJEBER)
Vol. 5 (5), pp. 52-63, © 2025 IJEBER (www.ijeber.com)

https://ijeber.com Copyright © The Author, All rights reserved Page 63

2) Kalouptsoglou, I., Siavvas, M., Ampatzoglou, A., Kehagias, D., & Chatzigeorgiou, A. (2025).

Transfer learning for software vulnerability prediction using Transformer models. Journal of

Systems and Software, 227, 112448. https://doi.org/10.1016/j.jss.2025.112448

3) Zhang, X., Zhang, F., Zhao, B., Zhou, B., & Xiao, B. (2023). VulD-Transformer: Source Code

Vulnerability Detection via Transformer. In Proceedings of Internetware 2023. Association for

Computing Machinery. https://doi.org/10.1145/3609437.3609451

4) Chan, A., Kharkar, A., Zilouchian Moghaddam, R., Mohylevskyy, Y., Helyar, A., Kamal, E.,

Elkamhawy, M., & Sundaresan, N. (2023). Transformer-based Vulnerability Detection in Code

at EditTime: Zero-shot, Few-shot, or Fine-tuning? arXiv preprint arXiv:2306.01754.

https://arxiv.org/abs/2306.01754

5) Tao, W., Su, X., & Ke, Y. (2025). Transformer-based statement-level vulnerability detection

by cross-modal fine-grained feature capture. Knowledge-Based Systems, 316, 113341.

https://doi.org/10.1016/j.knosys.2025.113341

6) Tian, Z., Tian, B., Lv, J., Chen, Y., & Chen, L. (2024). Enhancing vulnerability detection via

AST decomposition and neural sub-tree encoding. Expert Systems with Applications, 238,

121865. https://doi.org/10.1016/j.eswa.2023.121865

7) Cao, Y., Dong, Y., & Peng, J. (2024). Vulnerability detection based on transformer and high-

quality number embedding. Concurrency and Computation: Practice and Experience, 36(28),

e8292. https://doi.org/10.1002/cpe.8292

8) Zhang, T., Xu, R., Zhang, J., Liu, Y., Chen, X., Yin, J., & Zheng, X. (2023). DSHGT: Dual-

Supervisors Heterogeneous Graph Transformer-A pioneer study of using heterogeneous graph

learning for detecting software vulnerabilities. arXiv preprint arXiv:2306.01376.

https://arxiv.org/abs/2306.01376

9) Thapa, C., Jang, S. I., Ahmed, M. E., Camtepe, S., Pieprzyk, J., & Nepal, S. (2022).

Transformer-Based Language Models for Software Vulnerability Detection. In Proceedings of

the 38th Annual Computer Security Applications Conference (pp. 481–496). Association for

Computing Machinery. https://doi.org/10.1145/3564625.3567985

10) Fu, M., & Tantithamthavorn, C. (2022). LineVul: A Transformer-based Line-Level

Vulnerability Prediction. In Proceedings of the 19th International Conference on Mining

Software Repositories (pp. 608–618). Association for Computing Machinery.

https://doi.org/10.1145/3524842.3528452

11) Kumar, L., Singh, V., Patel, S., & Mishra, P. (2024). Empowering SW Security: CodeBERT

and Machine Learning Approaches to Vulnerability Detection. In Proceedings of the 21st

International Conference on Natural Language Processing (ICON 2024) (pp. 399–407). NLP

Association of India. https://aclanthology.org/2024.icon-1.46

12) Hanif, H., & Maffeis, S. (2022). VulBERTa: Simplified Source Code Pre-Training for

Vulnerability Detection. arXiv preprint arXiv:2205.12424. https://arxiv.org/abs/2205.12424

